

Bore Clamp

Block-type eccentric, double acting, for bore diameter 6.6 to 13.8 mm max. operating pressure 250 bar

Application

The patented bore clamp is particularly suitable for positioning and clamping of workpieces with bore holes from diameter 6.6 to 13.8 mm in the support face.

The workpiece is directly put onto the bore clamp, so that the remaining surfaces are free for 5-sided machining.

Due to its small and eccentric design the bore clamp can be placed very close to the work-piece contour.

According to the load additional clamping forces can be necessary, since the axial clamping force is relatively small (see page 3).

Description

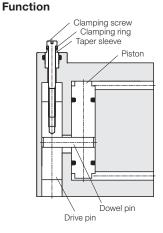
In the body of the bore clamp a double-acting hydraulic cylinder is mounted. By screwing in the clamping screw the piston actuates via a dowel pin a drive pin that is eccentrically arranged at the edge of the housing.

The clamping ring is centred on a taper sleeve and hold by the head of the clamping screw. The clamping screw is secured by means of a thread coating against loosening.

Penetration of liquids and swarf is avoided by the connection of positive air pressure protection.

Important notes

If liquids or swarf can penetrate, e.g. due to an open clamping bore, positive air pressure protection must be continuously switched on. In addition, the hardened support surface and the clamping ring should be blast cleaned before every clamping process.


Clamping ring and clamping screws are wear parts and should be exchanged after approx. 10,000 actuations (see page 3).

The axial pulling force is non-positively transmitted, since the exterior diameter of the clamping ring is not profiled. Therefore the clamping bores should not be tapered.

Advantages

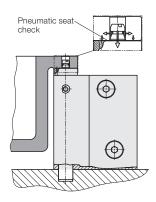
- Axial clamping in simple and smooth bore holes
- Low bore depths
- 5-sided machining possible
- 3 different clamping inserts "With centring"
 - "With compensation"
 - "Without centring"
- Additional centring elements are not required
- Repetitive accuracy 0.003 mm (with centring and compensation)
- Compact eccentric design
- Hardened support surface
- Pneumatic seat check
- Connection for positive air pressure protection
- Oil supply alternatively via pipe thread or wwdrilled channels

_ ..

Centring function

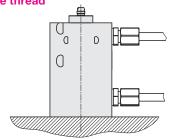
Bore clamp with centring
Type 4319X1

Fixed centring cone

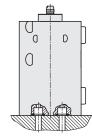

Bore clamp with compensation
Type 4319X2

Centring cone in one axial direction ± 0.2 mm movable

Bore clamp without centring
Type 4319X3


Centring cone in all directions ± 0.25 mm movable

Operating conditions and other data see data sheet A 0.100.

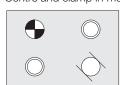


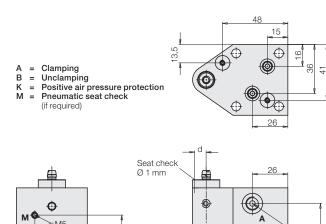
Connecting possibilities

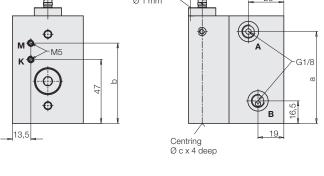
Pipe thread

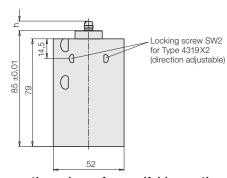
Drilled channels

Applications

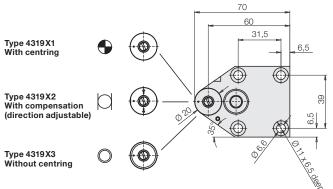

• Centre and clamp in 1 bore hole

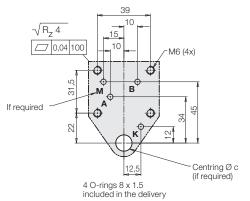

• Centre and clamp in 2 bore holes




• Centre and clamp in more than 2 bore holes

Dimensions Technical data





Connecting scheme for manifold mounting

Connection bore holes max. Ø 5 mm

Clamping range Ø dsp	[mm]	6.6 - 6.8	9.0 - 9.2	11.0 – 11.3	13.5 – 13.8	
Through hole Ø H13 as per DIN EN 20273-m	[mm]	6.6	9	11	13.5	
for screw thread		M6	M8	M10	M12	
Clamping screw		M4	M5	M6	M6	
Max. pulling force (250 bar)	[kN]	3.8	3.8	6.3	6.3	
Radial expansion force approx. *)	[kN]	3	3	5	5	
Axial clamping force approx. *)	[kN]	see clamping force diagram page 3				
Axial retention force approx. *)	[kN]	see clamping force diagram page 3				
Max. operating pressure	[bar]	250	250	250	250	
Min. operating pressure	[bar]	50	50	50	50	
Oil volume clamping/unclamping	[cm³]	0.2	0.2	0.3	0.3	
Max. flow rate	[cm ³ /s]	25	25	25	25	
a	[mm]	67.5	67.5	58	58	
b	[mm]	59	59	66	66	
Øc	[mm]	12 ^{H7}	12 ^{H7}	14 ^{H7}	14 ^{H7}	
d	[mm]	7.3	7.3	8.1	8.1	
h	[mm]	7.5	8.5	9.5	11	
Weight approx.	[kg]	1.65	1.65	1.7	1.7	
Part no. With centring		431921A066	431921A090	431931A110	431931A135	
With compensation		431922A066	431922A090	431932A110	431932A135	
Without centring **)		431923A066	431923A090	431933A110	431933A135	
For manifold-mounting connection						
O-ring 8 x 1.5 (NBR)		3000343	3000343	3000343	3000343	
Screw plug G 1/8 (with hexagon socket)		3610158	3610158	3610158	3610158	

^{*)} Forces at the clamping point and important notes see page 3

Clamping force Clamping bore hole • Spare parts

Forces at the clamping point

- F_z Pulling force of the clamping screw see chart page 2
- Radial expansion force of the clamping ring see chart page 2
- **F**_{SP} Axial clamping force (support force) see clamping force diagram
- $\mathbf{F}_{\mathbf{H}}$ Axial retention force = workpiece lifting force see clamping force diagram

Effective clamping force F_{sp}

The pulling force of the clamping screw acts onto the clamping ring, that will be expanded on the clamping taper and moves approx. 0.2-1 mm downwards.

As soon as the clamping ring gets in contact with the bore hole diameter a pull-down effect onto the support surface of the bore clamp results due to the sliding friction. The axial clamping force also depends on the friction coefficient µ.

Axial retention force F_H

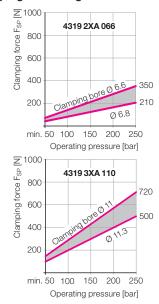
The clamping ring contacts the bore diameter with the expansion force F_B. The axial clamping force also depends on the friction coefficient μ . The axial retention force is a little bit higher with "soft" materials (AI) than the clamping force F_{s_0} . However when planning the system the values indicated in the clamping force diagram should not be exceeded for safety reasons.

Spare parts

Clamping range Ø	dsp	[mm]	6.6-6.8	9-9.2	11-11.3	13.5-13.8
Min. clamping ring Ø	*)	[mm]	6.5	8.9	10.9	13.4
Max. clamping ring Ø	**)	[mm]	6.9	9.3	11.4	13.9
Min. bore depth Ø	tmin	[mm]	8	9	10	11.5
Part no. (spare part)						
Clamping ring			3548815	3548633	3548634	3548639
Clamping ring + clamping screw		0354245	0354246	0354247	0354248	
Adjusting sleeve			34101193	34101194	34101195	34101196
*) New condition	**) Max. diameter of adjusting sleeve					

Adjust clamping ring

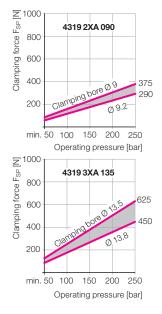
clamping range. (Do not adjust the clamping


After approx. 10,000 workpieces the clamping ring and the clamping screw should be replaced as a precaution.

Required parts:

New clamping ring and clamping screw as well as the appropriate adjusting sleeve (see chart).

- 1. Hydraulically move the bore clamp to clamping position.
- 2. Put the clamping ring onto the clamping taper. Pay attention to the correct position of the taper angle! (see drawing above).


Clamping force diagram

- New bore clamps are adjusted to the ordered 3. Screw in the clamping screw just before getting in contact with the clamping ring.
 - 4. Put on the adjusting sleeve.
 - 5. Screw in the clamping screw until the clamping ring contacts the interior diameter of the adjusting sleeve. Tighten the clamping screw only slightly! (The thread is secured against loosening by means of the Tuflok coating).
 - 6. Move the bore clamp to the unclamping position and remove the adjusting sleeve.

Measuring conditions

Material C45+C Wet machining

Important note

In case of hardened workpieces and in very smooth and greased clamping bore holes, the clamping force can be close to zero.

Remedy: Provide additional clamping elements, as e.g. swing clamps.